Numerical Analysis Of Flow And Heat Transfer For Supercritical CO2 And Liquid Sodium In Semicircular Mini-Channels

Lei Qin, Gongnan Xie, Shulei Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The Brayton cycle of supercritical carbon dioxide (S-CO2), is an ideal choice to replace the outdated power cycle. In order to improve the heat transfer performance, the Print Circuit Heat Exchanger (PCHE) has been attracted more attention, since it has a larger specific heat transfer area, compact structure, high efficiency. Based on this inspiration, the flow and heat transfer mechanism of S-CO2 and liquid metal sodium in a straight horizontal semicircular channel were studied, and the flow and coupled heat transfer was numerically analyzed. The influences of flow direction, Reynolds number and channel diameter on heat transfer performance and pressure drop in the semicircular straight channel were further studied. The results demonstrate that the performance of countercurrent designs 8.5% higher than that of the downstream pattern. The total heat transfer coefficient and pressure drop of both cold and hot channels in PCHE increase linearly with the rise in Reynolds number. The buoyancy effect affects the heat transfer when the pipeline velocity is small. The effect of buoyancy on heat transfer basically disappears when the pipeline velocity is high. When the diameter of the hot side channel is fixed and the diameter of the cold side channel is increased from 0.8mm to 1.1mm, the total heat transfer coefficient in the cold channel is increased by 8%, while the total heat transfer coefficient in the hot channel is increased by 51.6%. Through the above research in this paper, some heat transfer characteristics of sodium and supercritical carbon dioxide in PCHE are obtained, which is contribute to the design and optimization of the heat exchanger in sodium cooled fast reactor.

源语言英语
主期刊名Heat Transfer and Thermal Engineering
出版商American Society of Mechanical Engineers (ASME)
ISBN(电子版)9780791885673
DOI
出版状态已出版 - 2021
活动ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021 - Virtual, Online
期限: 1 11月 20215 11月 2021

出版系列

姓名ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
11

会议

会议ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
Virtual, Online
时期1/11/215/11/21

指纹

探究 'Numerical Analysis Of Flow And Heat Transfer For Supercritical CO2 And Liquid Sodium In Semicircular Mini-Channels' 的科研主题。它们共同构成独一无二的指纹。

引用此