Nonlinear unmixing of hyperspectral images based on multi-kernel learning

Jie Chen, Cédric Richard, Paul Honeine

科研成果: 书/报告/会议事项章节会议稿件同行评审

18 引用 (Scopus)

摘要

Nonlinear unmixing of hyperspectral images has generated considerable interest among researchers, as it may overcome some inherent limitations of the linear mixing model. In this paper, we formulate the problem of estimating abundances of a nonlinear mixture of hyperspectral data based on a new multi-kernel learning paradigm. Experiments are conducted using both synthetic and real images in order to illustrate the effectiveness of the proposed method.

源语言英语
主期刊名2012 4th Workshop on Hyperspectral Image and Signal Processing, WHISPERS 2012
出版商IEEE Computer Society
ISBN(印刷版)9781479934065
DOI
出版状态已出版 - 2012
已对外发布
活动2012 4th Workshop on Hyperspectral Image and Signal Processing, WHISPERS 2012 - Shanghai, 中国
期限: 4 6月 20127 6月 2012

出版系列

姓名Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
ISSN(印刷版)2158-6276

会议

会议2012 4th Workshop on Hyperspectral Image and Signal Processing, WHISPERS 2012
国家/地区中国
Shanghai
时期4/06/127/06/12

指纹

探究 'Nonlinear unmixing of hyperspectral images based on multi-kernel learning' 的科研主题。它们共同构成独一无二的指纹。

引用此