Nonlinear inertia convergence classification model of online power

Mei Wang, Yanan Guo, Xiaowei Li, Wei Mo, Liang Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

The development and the progress of science and technology of the power industry is faster and faster. Electric power cables are getting more and more widely used in the power system. It plays an extremely important role in industrial production and modern life. To overcome the problem that the kernel parameter and the punishment factor have great influence on the quality of Support Vector Machine (SVM) model, the Particle Swarm Optimization (PSO) is used to optimize the parameters, and then a kind of Hybrid Method Support Vector Machine (HMSVM) is established for fault recognition. Finally, the HMSVM is applied to the recognition of online power cable faults. It is experimentally proved that, the HMSVM is correct and effective for the fault recognition of the online power cable.

源语言英语
主期刊名Proceedings - 2014 International Symposium on Computer, Consumer and Control, IS3C 2014
出版商IEEE Computer Society
630-633
页数4
ISBN(印刷版)9781479952779
DOI
出版状态已出版 - 2014
已对外发布
活动2nd International Symposium on Computer, Consumer and Control, IS3C 2014 - Taichung, 中国台湾
期限: 10 6月 201412 6月 2014

出版系列

姓名Proceedings - 2014 International Symposium on Computer, Consumer and Control, IS3C 2014

会议

会议2nd International Symposium on Computer, Consumer and Control, IS3C 2014
国家/地区中国台湾
Taichung
时期10/06/1412/06/14

指纹

探究 'Nonlinear inertia convergence classification model of online power' 的科研主题。它们共同构成独一无二的指纹。

引用此