TY - JOUR
T1 - Ni-based catalysts for low temperature methane steam reforming
T2 - Recent results on Ni-Au and comparison with other bi-metallic systems
AU - Wu, Hongjing
AU - La Parola, Valeria
AU - Pantaleo, Giuseppe
AU - Puleo, Fabrizio P.
AU - Venezia, Anna M.
AU - Liotta, Leonarda F.
PY - 2013/6/5
Y1 - 2013/6/5
N2 - Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag) is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B) is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.
AB - Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag) is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B) is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.
KW - Bimetallic
KW - Gold
KW - Hydrocarbons steam reforming
KW - Nickel
KW - Support modification
KW - Surface alloy
UR - http://www.scopus.com/inward/record.url?scp=84906877349&partnerID=8YFLogxK
U2 - 10.3390/catal3020563
DO - 10.3390/catal3020563
M3 - 文献综述
AN - SCOPUS:84906877349
SN - 2073-4344
VL - 3
SP - 563
EP - 583
JO - Catalysts
JF - Catalysts
IS - 2
ER -