New designs of novel holes based on cylindrical configurations for improving film cooling effectiveness

Rui Zhu, Gongnan Xie, Terrence W. Simon

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

In modern gas turbines, film cooling technology is the most common and efficient way to provide thermal protection for hot parts. To improve film cooling effectiveness, different kinds of shaped holes have been designed, but most of them are complicated and difficult to machine. In this study, four cases of novel film cooling hole design, all based on cylindrical holes, are numerically studied. One is a single, two-stage cylindrical hole, whose downstreamhalf-length has a diameter D while the upstreamhalf-length has a diameter D/2. A second has a cylindrical primary hole with two smaller secondary holes located symmetrically about the centerline of the primary hole and downstream of the primary hole. The three holes of this second design are then combined to make a single shaped hole, constituting a third case, called the tri-circular shaped hole. The entry part of the third case is replaced by a cylindrical hole with a diameter of half the primary hole diameter, making a fourth case called the two-stage tri-circular shaped hole. Film cooling effectiveness and surrounding thermal and flow fields are numerically investigated for all four cases using various blowing ratios. It is shown from the simulation that the two-stage cylindrical hole cannot improve film cooling effectiveness. The primary hole with two secondary holes can enhance film cooling performance by creating anti-kidney vortex pairs, which will weaken jet lift-off, caused by the kidney vortex pairs,from the primary hole. The tri-circular shaped hole will provide better film cooling effectiveness near the hole area, and is not sensitive to blowing ratio. The two-stage structure for tri-circular shaped hole provides better film coverage because it changes the flow structure inside the channel and decreases jet penetration.

源语言英语
主期刊名Heat Transfer
出版商American Society of Mechanical Engineers (ASME)
ISBN(印刷版)9780791851081
DOI
出版状态已出版 - 2018
活动ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 - Oslo, 挪威
期限: 11 6月 201815 6月 2018

出版系列

姓名Proceedings of the ASME Turbo Expo
5A-2018

会议

会议ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018
国家/地区挪威
Oslo
时期11/06/1815/06/18

指纹

探究 'New designs of novel holes based on cylindrical configurations for improving film cooling effectiveness' 的科研主题。它们共同构成独一无二的指纹。

引用此