Neural network control using composite learning for USVs with output error constraints

Puyong Xu, Chenguang Yang, Shi Lu Dai, Zhaoyong Mao

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

In this paper, by focusing on trajectory tracking control of unmanned surface vessel (USV), we present a control method considering uncertain dynamics and output error constrains. Firstly, by using the properties of tan-type barrier Lyapunov function (BLF), the output tracking error can be constrained. Secondly, we use radical basis function neural network (RBF NN) to approximate the uncertain dynamics. Considering that the estimated parameters convergence cannot be achieved in the absence of persistent excitation (PE) conditions, the composite learning update law of the weight matrix in the NN is adopted to guarantee the parameters convergence under interval excitation (IE) conditions which is easier to reach. In simulation studies, it is proven that the USV have good ability to follow the pre-designed trajectory with small tracking error and the parameters convergence can be ensured.

源语言英语
主期刊名2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence, ICUSAI 2019
出版商Institute of Electrical and Electronics Engineers Inc.
50-55
页数6
ISBN(电子版)9781728158594
DOI
出版状态已出版 - 11月 2019
已对外发布
活动2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence, ICUSAI 2019 - Xi'an, 中国
期限: 22 11月 201924 11月 2019

出版系列

姓名2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence, ICUSAI 2019

会议

会议2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence, ICUSAI 2019
国家/地区中国
Xi'an
时期22/11/1924/11/19

指纹

探究 'Neural network control using composite learning for USVs with output error constraints' 的科研主题。它们共同构成独一无二的指纹。

引用此