Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise

Xiaolong Wang, Jing Feng, Qi Liu, Yongge Li, Yong Xu

科研成果: 期刊稿件文章同行评审

24 引用 (Scopus)

摘要

In this paper, a novel parameter estimation method based on a two-stage neural network (PENN) is proposed to carry out a joint estimation of a parameterized stochastic differential equation (SDE) driven by Lévy noise from a discretely sampled trajectory. The first stage is a long short term memory neural network to extract the compact time-irrelevant deep features from the trajectory. Then a fully connected neural network refines the deep features by integrating the information of time. This neural network architecture allows our method capable of processing trajectories with variable lengths and time spans. Representative SDEs including Ornstein–Uhlenbeck process, genetic toggle switch model and bistable Duffing system are presented to determine the effectiveness of our approach. The numerical results suggest that the PENN can simultaneously estimate the parameters of the system and Lévy noise with faster speed and higher accuracy in comparison with traditional estimation methods. Moreover, the method can be easily generalized to different SDEs with flexible settings of sample observation.

源语言英语
文章编号128146
期刊Physica A: Statistical Mechanics and its Applications
606
DOI
出版状态已出版 - 15 11月 2022

指纹

探究 'Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise' 的科研主题。它们共同构成独一无二的指纹。

引用此