Neural Network-based Classification of Breakdown Mechanisms and Prediction of breakdown Voltage and On-resistance for 4H-SiC Trench Gate MOS Devices

Jiaxi Zhang, Shiyan Zhang, Ze Sun, Yucheng Wang, Yupan Wu, Wei Li, Shaoxi Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Since neural networks do not face the convergence issues like TCAD simulations, we attempted to construct two types of neural networks for numerical prediction and mechanism classification, respectively. After training with the SiC trench gate MOS dataset obtained from different structural parameters using TCAD simulations, the accurate prediction results were achieved. During the validation process, the breakdown type classifier achieves an accuracy of 96.5%, and the numerical predictors for breakdown voltage and on-resistance have the average errors within 10%.

源语言英语
主期刊名2024 International Symposium of Electronics Design Automation, ISEDA 2024
出版商Institute of Electrical and Electronics Engineers Inc.
780-781
页数2
ISBN(电子版)9798350352030
DOI
出版状态已出版 - 2024
活动2024 International Symposium of Electronics Design Automation, ISEDA 2024 - Xi�an, 中国
期限: 10 5月 202413 5月 2024

出版系列

姓名2024 International Symposium of Electronics Design Automation, ISEDA 2024

会议

会议2024 International Symposium of Electronics Design Automation, ISEDA 2024
国家/地区中国
Xi�an
时期10/05/2413/05/24

指纹

探究 'Neural Network-based Classification of Breakdown Mechanisms and Prediction of breakdown Voltage and On-resistance for 4H-SiC Trench Gate MOS Devices' 的科研主题。它们共同构成独一无二的指纹。

引用此