摘要
A plasmonic double periodic arranged nanocone array (DPANA) integrated by nanotips and nanogaps exhibit strong capability of light compression, and thus lead to extremely enhanced electric near-field intensity. The DPANA is fabricated by the self-assembled mask integrated with the inductively couple plasma (ICP) etching technology. Finite-difference timedomain (FDTD) simulations suggest that the metallized DPANA can generate a strong hotspot at the sharp tip apex and the nanogap between adjacent sharp tips. The electric-field enhancement characteristic is firstly verified with the help of the second-order surface nonlinear optical response of the metallized DPANA. The surface-enhanced Raman spectroscopy (SERS) examination of the metallized DPANA exhibits high sensitivity due to clearly presenting the Raman spectra of Rhodamine-6G (R6G) with concentrations down to 10 pM and has excellent uniformity, time stability, and recyclability, simultaneously. Furthermore, the principle demonstration of SERS practical application is also performed for thiram. This as-prepared SERS substrate has great potential application for trace amount detection.
源语言 | 英语 |
---|---|
页(从-至) | 28086-28095 |
页数 | 10 |
期刊 | Optics Express |
卷 | 29 |
期 | 18 |
DOI | |
出版状态 | 已出版 - 30 8月 2021 |