Multimodal learning for multi-label image classification

Yanwei Pang, Zhao Ma, Yuan Yuan, Xuelong Li, Kongqiao Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

We tackle the challenge of web image classification using additional tags information. Unlike traditional methods that only use the combination of several low-level features, we try to use semantic concepts to represent images and corresponding tags. At first, we extract the latent topic information by probabilistic latent semantic analysis (pLSA) algorithm, and then use multi-label multiple kernel learning to combine visual and textual features to make a better image classification. In our experiments on PASCAL VOC'07 set and MIR Flickr set, we demonstrate the benefit of using multimodal feature to improve image classification. Specifically, we discover that on the issue of image classification, utilizing latent semantic feature to represent images and associated tags can obtain better classification results than other ways that integrating several low-level features.

源语言英语
主期刊名ICIP 2011
主期刊副标题2011 18th IEEE International Conference on Image Processing
1797-1800
页数4
DOI
出版状态已出版 - 2011
已对外发布
活动2011 18th IEEE International Conference on Image Processing, ICIP 2011 - Brussels, 比利时
期限: 11 9月 201114 9月 2011

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议2011 18th IEEE International Conference on Image Processing, ICIP 2011
国家/地区比利时
Brussels
时期11/09/1114/09/11

指纹

探究 'Multimodal learning for multi-label image classification' 的科研主题。它们共同构成独一无二的指纹。

引用此