MULTIDOMAN SYNCHRONOUS REFINEMENT NETWORK FOR UNSUPERVISED CROSS-DOMAIN PERSON RE-IDENTIFICATION

Sikai Bai, Junyu Gao, Qi Wang, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Unsupervised cross-domain person re-identification (re-ID) is a challenging task, because it is an open-set problem with completely unknown person identities in the target domain. Existing methods attempt to tackle the challenge by transferring image style across domains or generating pseudo labels in the target domain, whereas the valuable information in multiple domains (ie., source domain, style-transferred data, and target domain) is not taken fully into consideration. To this end, we propose a novel multidomain synchronous refinement (MDSR) nework, where valuable knowledge from multiple domains is sufficiently exploited and refined to enforce the discriminative ability of the model. MDSR network contains two omplementary modules dedicated to source-to-target domain adaptation and style-transferred data to the target domain adaptation, respectively. The domain adaptive knowledge from two modues is aggregated in the final stage. Extensive experiments verify ou method achieves significant improvements over the state-of-the-art approaches on multiple unsupervised domain adaptative person re-ID tasks.

源语言英语
主期刊名2021 IEEE International Conference on Multimedia and Expo, ICME 2021
出版商IEEE Computer Society
ISBN(电子版)9781665438643
DOI
出版状态已出版 - 2021
活动2021 IEEE International Conference on Multimedia and Expo, ICME 2021 - Shenzhen, 中国
期限: 5 7月 20219 7月 2021

出版系列

姓名Proceedings - IEEE International Conference on Multimedia and Expo
ISSN(印刷版)1945-7871
ISSN(电子版)1945-788X

会议

会议2021 IEEE International Conference on Multimedia and Expo, ICME 2021
国家/地区中国
Shenzhen
时期5/07/219/07/21

指纹

探究 'MULTIDOMAN SYNCHRONOUS REFINEMENT NETWORK FOR UNSUPERVISED CROSS-DOMAIN PERSON RE-IDENTIFICATION' 的科研主题。它们共同构成独一无二的指纹。

引用此