Multi-View Scaling Support Vector Machines for Classification and Feature Selection

Jinglin Xu, Junwei Han, Feiping Nie, Xuelong Li

科研成果: 期刊稿件文章同行评审

55 引用 (Scopus)

摘要

With the explosive growth of data, the multi-view data is widely used in many fields, such as data mining, machine learning, computer vision, and so on. Because such data always has a complex structure, i.e., many categories, many perspectives of description and high dimension, how to formulate an accurate and reliable framework for the multi-view classification is a very challenging task. In this paper, we propose a novel multi-view classification method by using multiple multi-class Support Vector Machines (SVMs) with a novel collaborative strategy. Here, each multi-class SVM embeds the scaling factor to renewedly adjust the weight allocation of all features, which is beneficial to highlight more important and discriminative features. Furthermore, we adopt the decision function values to integrate multiple multi-class learners and introduce the confidence score across multiple classes to determine the final classification result. In addition, through a series of the mathematical deduction, we bridge the proposed model with the solvable problem and solve it through an alternating iteration optimization method. We evaluate the proposed method on several image and face datasets, and the experimental results demonstrate that our proposed method performs better than other state-of-the-art learning algorithms.

源语言英语
文章编号8664197
页(从-至)1419-1430
页数12
期刊IEEE Transactions on Knowledge and Data Engineering
32
7
DOI
出版状态已出版 - 1 7月 2020

指纹

探究 'Multi-View Scaling Support Vector Machines for Classification and Feature Selection' 的科研主题。它们共同构成独一无二的指纹。

引用此