TY - GEN
T1 - Multi-view K-means clustering on big data
AU - Cai, Xiao
AU - Nie, Feiping
AU - Huang, Heng
PY - 2013
Y1 - 2013
N2 - In past decade, more and more data are collected from multiple sources or represented by multiple views, where different views describe distinct perspectives of the data. Although each view could be individually used for finding patterns by clustering, the clustering performance could be more accurate by exploring the rich information among multiple views. Several multi-view clustering methods have been proposed to unsupervised integrate different views of data. However, they are graph based approaches, e.g. based on spectral clustering, such that they cannot handle the large-scale data. How to combine these heterogeneous features for unsupervised large-scale data clustering has become a challenging problem. In this paper, we propose a new robust large-scale multi-view clustering method to integrate heterogeneous representations of largescale data. We evaluate the proposed new methods by six benchmark data sets and compared the performance with several commonly used clustering approaches as well as the baseline multi-view clustering methods. In all experimental results, our proposed methods consistently achieve superiors clustering performances.
AB - In past decade, more and more data are collected from multiple sources or represented by multiple views, where different views describe distinct perspectives of the data. Although each view could be individually used for finding patterns by clustering, the clustering performance could be more accurate by exploring the rich information among multiple views. Several multi-view clustering methods have been proposed to unsupervised integrate different views of data. However, they are graph based approaches, e.g. based on spectral clustering, such that they cannot handle the large-scale data. How to combine these heterogeneous features for unsupervised large-scale data clustering has become a challenging problem. In this paper, we propose a new robust large-scale multi-view clustering method to integrate heterogeneous representations of largescale data. We evaluate the proposed new methods by six benchmark data sets and compared the performance with several commonly used clustering approaches as well as the baseline multi-view clustering methods. In all experimental results, our proposed methods consistently achieve superiors clustering performances.
UR - http://www.scopus.com/inward/record.url?scp=84896062416&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:84896062416
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2598
EP - 2604
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -