Multi-View Clustering Via Mixed Embedding Approximation

Danyang Wu, Feiping Nie, Rong Wang, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

16 引用 (Scopus)

摘要

This paper tackles multi-view clustering via proposing a novel mixed embedding approximation (MEA) method. Formally, we aim to learn a uniform orthogonal embedding based on the orthogonal pre-embeddings of each view. At first, we hope that the uniform embedding can reconstruct the affinity graph of each view. To improve the representation of learnt embedding, we perform an embedding approximation on Grassmann manifold which is famous on subspace analysis. To perform the difference of views, a hidden weights learning module is provided. Moreover, we propose an iterative algorithm to solve the proposed MEA method and provide rigorously convergence analysis. Extensive experiments demonstrate the superiorities of the proposed method.

源语言英语
主期刊名2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
3977-3981
页数5
ISBN(电子版)9781509066315
DOI
出版状态已出版 - 5月 2020
活动2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, 西班牙
期限: 4 5月 20208 5月 2020

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

会议

会议2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国家/地区西班牙
Barcelona
时期4/05/208/05/20

指纹

探究 'Multi-View Clustering Via Mixed Embedding Approximation' 的科研主题。它们共同构成独一无二的指纹。

引用此