Multi-Speaker ASR combining non-autoregressive conformer CTC and conditional speaker chain

Pengcheng Guo, Xuankai Chang, Shinji Watanabe, Lei Xie

科研成果: 书/报告/会议事项章节会议稿件同行评审

14 引用 (Scopus)

摘要

Non-autoregressive (NAR) models have achieved a large inference computation reduction and comparable results with autoregressive (AR) models on various sequence to sequence tasks. However, there has been limited research aiming to explore the NAR approaches on sequence to multi-sequence problems, like multi-speaker automatic speech recognition (ASR). In this study, we extend our proposed conditional chain model to NAR multi-speaker ASR. Specifically, the output of each speaker is inferred one-by-one using both the input mixture speech and previously-estimated conditional speaker features. In each step, a NAR connectionist temporal classification (CTC) encoder is used to perform parallel computation. With this design, the total inference steps will be restricted to the number of mixed speakers. Besides, we also adopt the Conformer and incorporate an intermediate CTC loss to improve the performance. Experiments on WSJ0-Mix and LibriMix corpora show that our model outperforms other NAR models with only a slight increase of latency, achieving WERs of 22.3% and 24.9%, respectively. Moreover, by including the data of variable numbers of speakers, our model can even better than the PIT-Conformer AR model with only 1/7 latency, obtaining WERs of 19.9% and 34.3% on WSJ0-2mix and WSJ0-3mix sets. All of our codes are publicly available at https://github.com/pengchengguo/espnet/tree/conditionalmultispk.

源语言英语
主期刊名22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
出版商International Speech Communication Association
1401-1405
页数5
ISBN(电子版)9781713836902
DOI
出版状态已出版 - 2021
活动22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, 捷克共和国
期限: 30 8月 20213 9月 2021

出版系列

姓名Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
2
ISSN(印刷版)2308-457X
ISSN(电子版)1990-9772

会议

会议22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
国家/地区捷克共和国
Brno
时期30/08/213/09/21

指纹

探究 'Multi-Speaker ASR combining non-autoregressive conformer CTC and conditional speaker chain' 的科研主题。它们共同构成独一无二的指纹。

引用此