MPGL: An efficient matching pursuit method for generalized LASSO

Dong Gong, Mingkui Tan, Yanning Zhang, Anton Van Den Hengel, Qinfeng Shi

科研成果: 会议稿件论文同行评审

12 引用 (Scopus)

摘要

Unlike traditional LASSO enforcing sparsity on the variables, Generalized LASSO (GL) enforces sparsity on a linear transformation of the variables, gaining flexibility and success in many applications. However, many existing GL algorithms do not scale up to high-dimensional problems, and/or only work well for a specific choice of the transformation. We propose an efficient Matching Pursuit Generalized LASSO (MPGL) method, which overcomes these issues, and is guaranteed to converge to a global optimum. We formulate the GL problem as a convex quadratic constrained linear programming (QCLP) problem and tailor-make a cutting plane method. More specifically, our MPGL iteratively activates a subset of nonzero elements of the transformed variables, and solves a subproblem involving only the activated elements thus gaining significant speed-up. Moreover, MPGL is less sensitive to the choice of the trade-off hyper-parameter between data fitting and regularization, and mitigates the longstanding hyper-parameter tuning issue in many existing methods. Experiments demonstrate the superior efficiency and accuracy of the proposed method over the state-of-the-arts in both classification and image processing tasks.

源语言英语
1934-1940
页数7
出版状态已出版 - 2017
活动31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, 美国
期限: 4 2月 201710 2月 2017

会议

会议31st AAAI Conference on Artificial Intelligence, AAAI 2017
国家/地区美国
San Francisco
时期4/02/1710/02/17

指纹

探究 'MPGL: An efficient matching pursuit method for generalized LASSO' 的科研主题。它们共同构成独一无二的指纹。

引用此