MoNA Bench: A Benchmark for Monocular Depth Estimation in Navigation of Autonomous Unmanned Aircraft System

Yongzhou Pan, Binhong Liu, Zhen Liu, Hao Shen, Jianyu Xu, Wenxing Fu, Tao Yang

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Efficient trajectory and path planning (TPP) is essential for unmanned aircraft systems (UASs) autonomy in challenging environments. Despite the scale ambiguity inherent in monocular vision, characteristics like compact size make a monocular camera ideal for micro-aerial vehicle (MAV)-based UASs. This work introduces a real-time MAV system using monocular depth estimation (MDE) with novel scale recovery module for autonomous navigation. We present MoNA Bench, a benchmark for Monocular depth estimation in Navigation of the Autonomous unmanned Aircraft system (MoNA), emphasizing its obstacle avoidance and safe target tracking capabilities. We highlight key attributes—estimation efficiency, depth map accuracy, and scale consistency—for efficient TPP through MDE.

源语言英语
文章编号66
期刊Drones
8
2
DOI
出版状态已出版 - 2月 2024

指纹

探究 'MoNA Bench: A Benchmark for Monocular Depth Estimation in Navigation of Autonomous Unmanned Aircraft System' 的科研主题。它们共同构成独一无二的指纹。

引用此