摘要
The highest efficiency thermally activated delayed fluorescence (TADF) emitters in OLEDs are mostly based on twisted donor/acceptor (D/A) type organic molecules. Herein, we report the rational molecular design on twisted all ortho-linked carbazole/oxadiazole (Cz/OXD) hybrids with tunable D-A interactions by adjusting the numbers of donor/acceptor units and electron-donating abilities. Singlet-triplet energy bandgaps (ΔEST) are facilely tuned from ∼0.4, 0.15 to ∼0 eV in D-A, D-A-D to A-D-A type compounds. This variation correlates well with triplet-excited-state frontier orbital spatial separation efficiency. Non-TADF feature with solid state photoluminescence quantum yield (PLQY) < 10% is observed in D-A type 2CzOXD and D-A-D type 4CzOXD. Owing to the extremely low ΔEST for efficient reverse intersystem crossing, strong TADF with PLQY of 71%–92% is achieved in A-D-A type 4CzDOXD and 4tCzDOXD. High external quantum efficiency from 19.4% to 22.6% is achieved in A-D-A typed 4CzDOXD and 4tCzDOXD.
源语言 | 英语 |
---|---|
页(从-至) | 1955-1958 |
页数 | 4 |
期刊 | Chinese Chemical Letters |
卷 | 30 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 11月 2019 |