Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs

Ling Yu, Zhongbin Wu, Guohua Xie, Weixuan Zeng, Dongge Ma, Chuluo Yang

科研成果: 期刊稿件文章同行评审

145 引用 (Scopus)

摘要

Simultaneously achieving high efficiency and low efficiency roll-off remains a big challenge for OLEDs based on thermally activated delayed fluorescence (TADF) emitters. To address this issue, we elaborately designed and synthesized a series of new emitters with both TADF and aggregation-induced emission (AIE) properties by introducing 9,9-dimethyl-9,10-dihydroacridine (DMAC) or 10H-phenoxazine (PXZ) as donor units into a quinoxaline framework. By tuning the electron-donating capability of the donor as well as the amount of donor unit, the photophysical properties of the TADF-AIE emitters can be systematically regulated, with emissions ranging from green to red. We demonstrated efficient doped OLEDs with a maximum EQE of 22.4%, a maximum current efficiency (CEmax) of 80.3 cd A-1 and a maximum power efficiency (PEmax) of 64.1 lm W-1 for the green device, and an EQEmax of 14.1%, a CEmax of 36.1 cd A-1 and a PEmax of 28.1 lm W-1 for the orange device. Remarkably, these orange devices rendered small roll-offs of 1.4% and 21.3% respectively at a luminance of 100 and 1000 cd m-2. Attributed to the unique TADF and AIE features, the non-doped devices perform outstandingly with an EQEmax of 12.0%, a CEmax of 41.2 cd A-1 and a PEmax of 45.4 lm W-1.

源语言英语
页(从-至)1385-1391
页数7
期刊Chemical Science
9
5
DOI
出版状态已出版 - 2018
已对外发布

指纹

探究 'Molecular design to regulate the photophysical properties of multifunctional TADF emitters towards high-performance TADF-based OLEDs with EQEs up to 22.4% and small efficiency roll-offs' 的科研主题。它们共同构成独一无二的指纹。

引用此