Modeling the overall solidification kinetics for undercooled single-phase solid-solution alloys. I. Model derivation

Haifeng Wang, Feng Liu, Gencang Yang, Yaohe Zhou

科研成果: 期刊稿件文章同行评审

26 引用 (Scopus)

摘要

Departing from the volume-averaging method, the equiaxed solidification model was extended to describe the overall solidification kinetics of undercooled single-phase solid-solution alloys. In this model, a single grain, whose size is given assuming site saturation, is divided into three phases, i.e. the solid dendrite, the inter-dendritic liquid and the extra-dendritic liquid. The non-equilibrium solute diffusion in the inter-dendritic liquid and the extra-dendritic liquid, as well as the heat diffusion in the extra-dendritic liquid, is considered. The growth kinetics of the solid/liquid interface is given by the solute or heat balance, where a maximal growth velocity criterion is applied to determine the transition from thermal-controlled growth to solutal-controlled growth. A dendrite growth model, in which the nonlinear liquidus and solidus, the non-equilibrium interface kinetics, and the non-equilibrium solute diffusion in liquid are considered, is applied to describe the growth kinetics of the grain envelope. On this basis, the solidification path is described.

源语言英语
页(从-至)5402-5410
页数9
期刊Acta Materialia
58
16
DOI
出版状态已出版 - 9月 2010

指纹

探究 'Modeling the overall solidification kinetics for undercooled single-phase solid-solution alloys. I. Model derivation' 的科研主题。它们共同构成独一无二的指纹。

引用此