Model Predictive Tracking Control for USV with Model Error Learning

Siyu Chen, Huiping Li, Fei Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

This paper is concerned with the learning-based model predictive control (MPC) for the trajectory tracking of unmanned surface vehicle (USV). The accuracy of system model has a significant influence on the control performance of MPC. However, the complex hydrodynamics and the complicated structure of USV make it difficult to capture the accurate system model. Therefore, we present a learning approach to model the residual dynamics of USV by using Gaussian process regression. The learned model is employed to compensate the nominal model for MPC. Simulation studies are carried out to verify the effectiveness of the proposed method.

源语言英语
主期刊名Artificial Intelligence - Second CAAI International Conference, CICAI 2022, Revised Selected Papers
编辑Lu Fang, Daniel Povey, Guangtao Zhai, Tao Mei, Ruiping Wang
出版商Springer Science and Business Media Deutschland GmbH
451-461
页数11
ISBN(印刷版)9783031205026
DOI
出版状态已出版 - 2022
活动2nd CAAI International Conference on Artificial Intelligence, CICAI 2022 - Beijing, 中国
期限: 27 8月 202228 8月 2022

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13606 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议2nd CAAI International Conference on Artificial Intelligence, CICAI 2022
国家/地区中国
Beijing
时期27/08/2228/08/22

指纹

探究 'Model Predictive Tracking Control for USV with Model Error Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此