Microstructure and water corrosion behavior of (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7 high-entropy rare-earth disilicate coating for SiC coated C/C composites

Guohui Chen, Yulei Zhang, Xiaotong Guo, Yanqin Fu, Jing'an Kong, Wenhan Gai, Pengfei Zhang

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

In order to make carbon/carbon composites suitable for application in gas turbine engine, it is necessary to develop environmental barrier coatings (EBCs) to protect them from reacting with water vapor. In our previous work, a novel high-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7 ((5RE0.2)2Si2O7) has been developed and verified as a promising candidate for EBCs. In this work, the (5RE0.2)2Si2O7 coating was synthesized on the surface of SiC coated C/C composites by supersonic atmospheric plasma spraying method. The protective performance and mechanism of this coating under high temperature water vapor environment was explored in detail. Results showed that the weight change of the sample coated with (5RE0.2)2Si2O7 was only 0.2% after corrosion for 100 h at 1500 ºC, which proved that (5RE0.2)2Si2O7 coating could significantly improve the resistance of C/C composites against water vapor corrosion. This work may provide theoretical basis for the design and application of high-entropy rare-earth silicates as EBCs.

源语言英语
页(从-至)3647-3657
页数11
期刊Journal of the European Ceramic Society
43
8
DOI
出版状态已出版 - 7月 2023

指纹

探究 'Microstructure and water corrosion behavior of (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7 high-entropy rare-earth disilicate coating for SiC coated C/C composites' 的科研主题。它们共同构成独一无二的指纹。

引用此