TY - JOUR
T1 - Microstructure and mechanical properties of SiCP/SiC and SiCW/SiC composites by CVI
AU - Hua, Yunfeng
AU - Zhang, Litong
AU - Cheng, Laifei
AU - Li, Zhengxian
AU - Du, Jihong
PY - 2010/1
Y1 - 2010/1
N2 - 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were prepared by chemical vapor infiltration (CVI) process through depositing SiC matrix in the porous particulate and whisker preforms, respectively. The particulate (or whisker) preforms has two types of pores; one is small pores of several micrometers at inter-particulates (or whiskers) and the other one is large pores of hundreds micrometers at inter-agglomerates. The microstructure and mechanical properties of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were studied. 37.2 vol.% SiC P/SiC (or 25.0 vol.% SiCW/SiC) consisted of the particulate (or whisker) reinforced SiC agglomerates, SiC matrix phase located inter-agglomerates and two types of pores located inter-particulates (or whiskers) and inter-agglomerates. The density, fracture toughness evaluated by SENB method, and flexural strength of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were 2.94 and 2.88 g/cm3, 6.18 and 8.34 MPa m1/2, and 373 and 425 MPa, respectively. The main toughening mechanism was crack deflection and bridging.
AB - 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were prepared by chemical vapor infiltration (CVI) process through depositing SiC matrix in the porous particulate and whisker preforms, respectively. The particulate (or whisker) preforms has two types of pores; one is small pores of several micrometers at inter-particulates (or whiskers) and the other one is large pores of hundreds micrometers at inter-agglomerates. The microstructure and mechanical properties of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were studied. 37.2 vol.% SiC P/SiC (or 25.0 vol.% SiCW/SiC) consisted of the particulate (or whisker) reinforced SiC agglomerates, SiC matrix phase located inter-agglomerates and two types of pores located inter-particulates (or whiskers) and inter-agglomerates. The density, fracture toughness evaluated by SENB method, and flexural strength of 37.2 vol.% SiCP/SiC and 25.0 vol.% SiCW/SiC composites were 2.94 and 2.88 g/cm3, 6.18 and 8.34 MPa m1/2, and 373 and 425 MPa, respectively. The main toughening mechanism was crack deflection and bridging.
UR - http://www.scopus.com/inward/record.url?scp=73049115783&partnerID=8YFLogxK
U2 - 10.1007/s10853-009-3953-2
DO - 10.1007/s10853-009-3953-2
M3 - 文章
AN - SCOPUS:73049115783
SN - 0022-2461
VL - 45
SP - 392
EP - 398
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 2
ER -