TY - JOUR
T1 - Microscopic phase-field simulation of the structure transformation from DO22 to L10(M=1) phase in Ni64Al21V15 alloy
AU - Chang, Xiuli
AU - Wang, Yongxin
AU - Chen, Zheng
AU - Zhang, Jing
AU - Cheng, Liwei
PY - 2013/6
Y1 - 2013/6
N2 - The structure transformation from DO22 to L10 (M=1) phase in Ni64Al21V15 alloy at 1150 K was studied by the microscopic phase-field kinetic model. The results show that L10 (M=1) structure precipitates at interphase during the middle stage of the aging process with three types of the formation mechanism. Firstly, the L10 (M=1) structure which aligns along [001] direction and nucleates at the interphase of L12 and DO22 grows towards DO22 phase. Secondly, the L10 (M=1) structure which aligns along [001] direction nucleates at 90° ordered domain boundary of DO22 phase and expands to the [001] direction of DO22 phase. Thirdly, the L10 (M=1) structure which aligns along [100] direction nucleates at the interphase of two [100] aligned DO22 structure, and expands towards DO22 phase. The phase transformation from DO22 structure to L10 (M=1) structure is accomplished by atomic diffusion. In a perfect DO22 phase, the β site is mainly occupied by V atoms, while the α2 and α3 sites by Ni atoms and the α1 site by Al atoms. As the aging process proceeds, V atoms which migrate to α2 site, leading to the atomic ordering on (002) plane takes the place of both β and α2 sites ultimately, and the Ni atoms migrate from α2 to α1 site and occupy both α1 and α3 sites lastly, while Al atoms diffuse towards outside of DO22 structure facilitating the formation of highly ordered L10 (M=1) structure finally.
AB - The structure transformation from DO22 to L10 (M=1) phase in Ni64Al21V15 alloy at 1150 K was studied by the microscopic phase-field kinetic model. The results show that L10 (M=1) structure precipitates at interphase during the middle stage of the aging process with three types of the formation mechanism. Firstly, the L10 (M=1) structure which aligns along [001] direction and nucleates at the interphase of L12 and DO22 grows towards DO22 phase. Secondly, the L10 (M=1) structure which aligns along [001] direction nucleates at 90° ordered domain boundary of DO22 phase and expands to the [001] direction of DO22 phase. Thirdly, the L10 (M=1) structure which aligns along [100] direction nucleates at the interphase of two [100] aligned DO22 structure, and expands towards DO22 phase. The phase transformation from DO22 structure to L10 (M=1) structure is accomplished by atomic diffusion. In a perfect DO22 phase, the β site is mainly occupied by V atoms, while the α2 and α3 sites by Ni atoms and the α1 site by Al atoms. As the aging process proceeds, V atoms which migrate to α2 site, leading to the atomic ordering on (002) plane takes the place of both β and α2 sites ultimately, and the Ni atoms migrate from α2 to α1 site and occupy both α1 and α3 sites lastly, while Al atoms diffuse towards outside of DO22 structure facilitating the formation of highly ordered L10 (M=1) structure finally.
KW - L1 (M=1) structure
KW - Microscopic phase-field model
KW - Ni-Al-V alloy
KW - Order parameter
KW - Structure transformation
UR - http://www.scopus.com/inward/record.url?scp=84880029338&partnerID=8YFLogxK
M3 - 文章
AN - SCOPUS:84880029338
SN - 1002-185X
VL - 42
SP - 1113
EP - 1117
JO - Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering
JF - Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering
IS - 6
ER -