TY - JOUR
T1 - Microscopic phase field simulation for the influence of Ni-Al ordering energy on ordering behavior of Ni75Al13Cr12 alloy atoms
AU - Zhao, Yan
AU - Chen, Zheng
AU - Wang, Yongxin
AU - Zhang, Lipeng
AU - Zhang, Mingyi
AU - Zhang, Jing
PY - 2009/10
Y1 - 2009/10
N2 - The influence of Ni-Al ordering energy from the first to the fourth layer on the atom long range order progress in Ni75Al13Cr12 alloy was investigated by microscopic phase field model. Results show that as the first Ni-Al ordering energy increased the ordering and the clustering degree of Al atoms increased, while that of Cr atoms alternated with time steps. As the second Ni-Al ordering energy increased, the ordering and the clustering degree of Al atoms decreased, while that of Cr atoms alternated, too, which was opposite to the change of the first layer. As the third Ni-Al ordering energy increased, the degree and speed of the ordering and the clustering of Al and Cr atoms were all increased. And the influence of the fourth Ni-Al ordering energy was contrary with the third one. Under the same change of ±10 meV, the influence of Ni-Al ordering energy on the ordering and the clustering of Al atoms became more obvious as increasing of the number of the layer; the influence of the third Ni-Al ordering energy on the ordering and the clustering of Cr atoms was maximum; while the influence of the second Ni-Al ordering energy on the Cr ordering was minimum, and the influence of the fourth ordering energy on the clustering of Cr atoms was minimum.
AB - The influence of Ni-Al ordering energy from the first to the fourth layer on the atom long range order progress in Ni75Al13Cr12 alloy was investigated by microscopic phase field model. Results show that as the first Ni-Al ordering energy increased the ordering and the clustering degree of Al atoms increased, while that of Cr atoms alternated with time steps. As the second Ni-Al ordering energy increased, the ordering and the clustering degree of Al atoms decreased, while that of Cr atoms alternated, too, which was opposite to the change of the first layer. As the third Ni-Al ordering energy increased, the degree and speed of the ordering and the clustering of Al and Cr atoms were all increased. And the influence of the fourth Ni-Al ordering energy was contrary with the third one. Under the same change of ±10 meV, the influence of Ni-Al ordering energy on the ordering and the clustering of Al atoms became more obvious as increasing of the number of the layer; the influence of the third Ni-Al ordering energy on the ordering and the clustering of Cr atoms was maximum; while the influence of the second Ni-Al ordering energy on the Cr ordering was minimum, and the influence of the fourth ordering energy on the clustering of Cr atoms was minimum.
KW - Long range order
KW - Microscopic phase field
KW - NiAlCr alloy
KW - Ordering energy
UR - http://www.scopus.com/inward/record.url?scp=70749140786&partnerID=8YFLogxK
M3 - 文章
AN - SCOPUS:70749140786
SN - 1002-185X
VL - 38
SP - 1756
EP - 1760
JO - Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering
JF - Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering
IS - 10
ER -