Mechanical logic gate design based on multi-stable metamaterial with multi-step deformation

Xiuhui Hou, Tianhao Sheng, Feng Xie, Zichen Deng

科研成果: 期刊稿件文章同行评审

10 引用 (Scopus)

摘要

Mechanical metamaterials exhibit remarkable design versatility, enabling a series of unconventional mechanical properties via structural modifications. However, it is worth noting that many existing mechanical metamaterials either possess a singular deformation path or only multi-step deformation paths without reusability. This study proposes a novel multi-step deformation metamaterial that possesses multiple stable configurations. This metamaterial produces a unique two-step deformation mode under displacement loading, where the curved beams of the unit cells undergo snap-through and the vertical beams buckling. The influence of geometrical parameters on the multistability of the structure is thoroughly examined, and a theoretical prediction model for the buckling load is formulated. To validate the accuracy of the model, experimental tests and finite element simulations are conducted on the two-step deformation mode of periodic array of the unit cell. Additionally, a bi-material design approach for the unit cell is further introduced to enhance the specific energy absorption of the structure while reinforce the negative stiffness effect. Leveraging the multistable characteristics of the structure, mechanical logic gates such as AND, OR, NOT and NAND are conceptualized and experimentally validated. Through the implementation of rational designs and combinatorial connections within the logic gate structure, more complex logic operations can be realized.

源语言英语
文章编号118001
期刊Composite Structures
335
DOI
出版状态已出版 - 5月 2024

指纹

探究 'Mechanical logic gate design based on multi-stable metamaterial with multi-step deformation' 的科研主题。它们共同构成独一无二的指纹。

引用此