TY - JOUR
T1 - Machine-learning-augmented domain decomposition method for near-wall turbulence modeling
AU - Lyu, Shiyu
AU - Kou, Jiaqing
AU - Adams, Nikolaus A.
N1 - Publisher Copyright:
© 2024 American Physical Society.
PY - 2024/4
Y1 - 2024/4
N2 - To tackle the challenging near-wall turbulence modeling while preserving low computational cost, the near-wall nonoverlapping domain decomposition (NDD) method is proposed, incorporating the machine-learning technique. Using recently proposed implicit NDD (INDD), the solution can be calculated with a Robin-type (slip) wall boundary condition on a relatively coarse mesh and then corrected in the near-wall region at every iteration through an estimated turbulent viscosity profile obtained from a neural network. To maintain a reasonable complexity with acceptable accuracy, only the near-wall field properties, i.e., wall-normal distance, near-wall velocities, streamwise pressure gradients, and one near-wall scale parameter, are employed as the input features for the neural network. The benefit of incorporating machine learning is twofold. First, the near-wall turbulent viscosity is predicted more accurately than by the traditional algebraic functions used in the approximate approach. Second, similarly to the conventional NDD, the present simulations save one order of computational cost over the fully resolved one-block simulations. The accuracy and efficiency of the method are demonstrated on test cases with the k-ϵ model, including turbulent flows in a channel and an asymmetric diffuser at different Reynolds numbers. Results compare favorably with the one-block benchmark solutions and show a better agreement when compared with approximate NDD predictions. In the latter case, a variation of diffuser geometry is also considered to test the model performance on engineering design tasks with another turbulent model (i.e., Spalart-Allmaras), showing good generalization capability on different turbulence closures.
AB - To tackle the challenging near-wall turbulence modeling while preserving low computational cost, the near-wall nonoverlapping domain decomposition (NDD) method is proposed, incorporating the machine-learning technique. Using recently proposed implicit NDD (INDD), the solution can be calculated with a Robin-type (slip) wall boundary condition on a relatively coarse mesh and then corrected in the near-wall region at every iteration through an estimated turbulent viscosity profile obtained from a neural network. To maintain a reasonable complexity with acceptable accuracy, only the near-wall field properties, i.e., wall-normal distance, near-wall velocities, streamwise pressure gradients, and one near-wall scale parameter, are employed as the input features for the neural network. The benefit of incorporating machine learning is twofold. First, the near-wall turbulent viscosity is predicted more accurately than by the traditional algebraic functions used in the approximate approach. Second, similarly to the conventional NDD, the present simulations save one order of computational cost over the fully resolved one-block simulations. The accuracy and efficiency of the method are demonstrated on test cases with the k-ϵ model, including turbulent flows in a channel and an asymmetric diffuser at different Reynolds numbers. Results compare favorably with the one-block benchmark solutions and show a better agreement when compared with approximate NDD predictions. In the latter case, a variation of diffuser geometry is also considered to test the model performance on engineering design tasks with another turbulent model (i.e., Spalart-Allmaras), showing good generalization capability on different turbulence closures.
UR - http://www.scopus.com/inward/record.url?scp=85189667520&partnerID=8YFLogxK
U2 - 10.1103/PhysRevFluids.9.044603
DO - 10.1103/PhysRevFluids.9.044603
M3 - 文章
AN - SCOPUS:85189667520
SN - 2469-990X
VL - 9
JO - Physical Review Fluids
JF - Physical Review Fluids
IS - 4
M1 - 044603
ER -