Local Implicit Ray Function for Generalizable Radiance Field Representation

Xin Huang, Qi Zhang, Ying Feng, Xiaoyu Li, Xuan Wang, Qing Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

17 引用 (Scopus)

摘要

We propose LIRF (Local Implicit Ray Function), a generalizable neural rendering approach for novel view rendering. Current generalizable neural radiance fields (NeRF) methods sample a scene with a single ray per pixel and may therefore render blurred or aliased views when the input views and rendered views capture scene content with different resolutions. To solve this problem, we propose LIRF to aggregate the information from conical frustums to construct a ray. Given 3D positions within conical frustums, LIRF takes 3D coordinates and the features of conical frustums as inputs and predicts a local volumetric radiance field. Since the coordinates are continuous, LIRF renders high-quality novel views at a continuously-valued scale via volume rendering. Besides, we predict the visible weights for each input view via transformer-based feature matching to improve the performance in occluded areas. Experimental results on real-world scenes validate that our method outperforms state-of-the-art methods on novel view rendering of unseen scenes at arbitrary scales.

源语言英语
主期刊名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
出版商IEEE Computer Society
97-107
页数11
ISBN(电子版)9798350301298
DOI
出版状态已出版 - 2023
活动2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, 加拿大
期限: 18 6月 202322 6月 2023

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2023-June
ISSN(印刷版)1063-6919

会议

会议2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
国家/地区加拿大
Vancouver
时期18/06/2322/06/23

指纹

探究 'Local Implicit Ray Function for Generalizable Radiance Field Representation' 的科研主题。它们共同构成独一无二的指纹。

引用此