@inproceedings{98f1701d04184ec2b07f4c88f0f7b14b,
title = "Local-Global Defense against Unsupervised Adversarial Attacks on Graphs",
abstract = "Unsupervised pre-training algorithms for graph representation learning are vulnerable to adversarial attacks, such as first-order perturbations on graphs, which will have an impact on particular downstream applications. Designing an effective representation learning strategy against white-box attacks remains a crucial open topic. Prior research attempts to improve representation robustness by maximizing mutual information between the representation and the perturbed graph, which is sub-optimal because it does not adapt its defense techniques to the severity of the attack. To address this issue, we propose an unsupervised defense method that combines local and global defense to improve the robustness of representation. Note that we put forward the Perturbed Edges Harmfulness (PEH) metric to determine the riskiness of the attack. Thus, when the edges are attacked, the model can automatically identify the risk of attack. We present a method of attention-based protection against high-risk attacks that penalizes attention coefficients of perturbed edges to encoders. Extensive experiments demonstrate that our strategies can enhance the robustness of representation against various adversarial attacks on three benchmark graphs.",
author = "Di Jin and Bingdao Feng and Siqi Guo and Xiaobao Wang and Jianguo Wei and Zhen Wang",
note = "Publisher Copyright: Copyright {\textcopyright} 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.; 37th AAAI Conference on Artificial Intelligence, AAAI 2023 ; Conference date: 07-02-2023 Through 14-02-2023",
year = "2023",
month = jun,
day = "27",
doi = "10.1609/aaai.v37i7.25979",
language = "英语",
series = "Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023",
publisher = "AAAI press",
pages = "8105--8113",
editor = "Brian Williams and Yiling Chen and Jennifer Neville",
booktitle = "AAAI-23 Technical Tracks 7",
}