LncDisAP: A computation model for LncRNA-disease association prediction based on multiple biological datasets

Yongtian Wang, Liran Juan, Jiajie Peng, Tianyi Zang, Yadong Wang

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)

摘要

Background: Over the past decades, a large number of long non-coding RNAs (lncRNAs) have been identified. Growing evidence has indicated that the mutation and dysregulation of lncRNAs play a critical role in the development of many complex human diseases. Consequently, identifying potential disease-related lncRNAs is an effective means to improve the quality of disease diagnostics and treatment, which is the motivation of this work. Here, we propose a computational model (LncDisAP) for potential disease-related lncRNA identification based on multiple biological datasets. First, the associations between lncRNA and different data sources are collected from different databases. With these data sources as dimensions, we calculate the functional associations between lncRNAs by the recommendation strategy of collaborative filtering. Subsequently, a disease-associated lncRNA functional network is built with functional similarities between lncRNAs as the weight. Ultimately, potential disease-related lncRNAs can be identified based on ranked scores derived by random walking with restart (RWR). Then, training sets and testing sets are extracted from two different versions of a disease-lncRNA dataset to assess the performance of LncDisAP on 54 diseases. Results: A lncRNA functional network is built based on the proposed computational model, and it contains 66,060 associations among 364 lncRNAs associated with 182 diseases in total. We extract 218 known disease-lncRNA pairs associated with 54 diseases to assess the network. As a result, the average AUC (area under the receiver operating characteristic curve) of LncDisAP is 78.08%. Conclusion: In this article, a computational model integrating multiple lncRNA-related biological datasets is proposed for identifying potential disease-related lncRNAs. The result shows that LncDisAP is successful in predicting novel disease-related lncRNA signatures. In addition, with several common cancers taken as case studies, we found some unknown lncRNAs that could be associated with these diseases through our network. These results suggest that this method can be helpful in improving the quality for disease diagnostics and treatment.

源语言英语
文章编号582
期刊BMC Bioinformatics
20
DOI
出版状态已出版 - 2 12月 2019

指纹

探究 'LncDisAP: A computation model for LncRNA-disease association prediction based on multiple biological datasets' 的科研主题。它们共同构成独一无二的指纹。

引用此