LES-based filter-matrix lattice Boltzmann model for simulating turbulent natural convection in a square cavity

Congshan Zhuo, Chengwen Zhong

科研成果: 期刊稿件文章同行评审

44 引用 (Scopus)

摘要

In this paper, a novel thermal filter-matrix lattice Boltzmann model based on large eddy simulation (LES) is proposed for simulating turbulent natural convection. In this study, the Vreman subgrid-scale eddy-viscosity model is introduced into the present framework of LES to accurately predict the flow in near-wall region. Two dimensional numerical simulations of natural convection in a square cavity were performed at high Rayleigh number varying from 107 to 1010 with a fixed Prandtl number of Pr=0.71. The influences of the higher-order terms upon the present results at high Rayleigh numbers are examined, taking Ra=107 and 108 as the example, revealing that the proper minimization of the higher-order terms can improve numerical accuracy of present model for high Rayleigh convective flow. For the turbulent convective flow, the time-averaged quantities in the median lines are presented and compared against those available results from previous studies. The general structure of turbulent boundary layers is well predicted. All numerical results exhibit good agreement with the benchmark solutions available in the previous literatures.

源语言英语
页(从-至)10-22
页数13
期刊International Journal of Heat and Fluid Flow
42
DOI
出版状态已出版 - 8月 2013

指纹

探究 'LES-based filter-matrix lattice Boltzmann model for simulating turbulent natural convection in a square cavity' 的科研主题。它们共同构成独一无二的指纹。

引用此