Learning to Mine Context Information for Remote Sensing Small Object Detection

Lang Li, Jie Tang, Zhiqiang Chi, Yunqiang Niu, Jun Ren, Lei Li, Xiwen Yao, Gong Cheng, Junwei Han

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Object detection in remote sensing images has advanced significantly, nevertheless, it still faces the dilemma of low performance in detecting small objects. Due to extremely limited area, small objects can easily be submerged in complex backgrounds and suffer from insufficient context semantic information. To alleviate the aforementioned issues, we design a lightweight plug-and-play module named Cascade Local-Global Context Module (CLGCM) to extract context information. The module contains one cascade operation and two novel Sparse Context Blocks. The cascade operation can obtain long-range context semantic information at a small computational cost. And Sparse Context Block focuses on the most relevant semantic information through a sparsification operation. When integrated with Faster-RCNN and Cascade R-CNN, our module further boosts detection performance on the small object detection benchmark, AI-TOD, which significantly outperforms other mainstream algorithms.

源语言英语
主期刊名Advances in Guidance, Navigation and Control - Proceedings of 2024 International Conference on Guidance, Navigation and Control Volume 10
编辑Liang Yan, Haibin Duan, Yimin Deng
出版商Springer Science and Business Media Deutschland GmbH
307-317
页数11
ISBN(印刷版)9789819622351
DOI
出版状态已出版 - 2025
活动International Conference on Guidance, Navigation and Control, ICGNC 2024 - Changsha, 中国
期限: 9 8月 202411 8月 2024

出版系列

姓名Lecture Notes in Electrical Engineering
1346 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Guidance, Navigation and Control, ICGNC 2024
国家/地区中国
Changsha
时期9/08/2411/08/24

指纹

探究 'Learning to Mine Context Information for Remote Sensing Small Object Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此