Learning strictly orthogonal p-order nonnegative Laplacian embedding via smoothed iterative reweighted method

Haoxuan Yang, Kai Liu, Hua Wang, Feiping Nie

科研成果: 书/报告/会议事项章节会议稿件同行评审

9 引用 (Scopus)

摘要

Laplacian Embedding (LE) is a powerful method to reveal the intrinsic geometry of high-dimensional data by using graphs. Imposing the orthogonal and nonnegative constraints onto the LE objective has proved to be effective to avoid degenerate and negative solutions, which, though, are challenging to achieve simultaneously because they are nonlinear and nonconvex. In addition, recent studies have shown that using the p-th order of the `2-norm distances in LE can find the best solution for clustering and promote the robustness of the embedding model against outliers, although this makes the optimization objective nonsmooth and difficult to efficiently solve in general. In this work, we study LE that uses the p-th order of the `2-norm distances and satisfies both orthogonal and nonnegative constraints. We introduce a novel smoothed iterative reweighted method to tackle this challenging optimization problem and rigorously analyze its convergence. We demonstrate the effectiveness and potential of our proposed method by extensive empirical studies on both synthetic and real data sets.

源语言英语
主期刊名Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
编辑Sarit Kraus
出版商International Joint Conferences on Artificial Intelligence
4040-4046
页数7
ISBN(电子版)9780999241141
DOI
出版状态已出版 - 2019
活动28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, 中国
期限: 10 8月 201916 8月 2019

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
2019-August
ISSN(印刷版)1045-0823

会议

会议28th International Joint Conference on Artificial Intelligence, IJCAI 2019
国家/地区中国
Macao
时期10/08/1916/08/19

指纹

探究 'Learning strictly orthogonal p-order nonnegative Laplacian embedding via smoothed iterative reweighted method' 的科研主题。它们共同构成独一无二的指纹。

引用此