Learning semantic concepts from user feedback log for image retrieval

Junwei Han, King N. Ngan, Mingjing Li, Hongjiang Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

To improve the performance of image retrieval systems, the well-known semantic gap needs to be bridged. Relevance feedback provides a strategy for learning semantic concepts from visual features. This paper reports a novel framework to learn semantic concepts from accumulated user feedback log. The semantic concepts consist of two categories: explicit semantics and implicit semantics. The former can be directly estimated by analyzing user-provided feedback log. The latter is learned according to the obtained explicit semantics. Finally, both explicit and implicit semantics are applied to an image retrieval system. Experiments on 10,000 images show the superiority of the proposed method.

源语言英语
主期刊名2004 IEEE International Conference on Multimedia and Expo (ICME)
995-998
页数4
出版状态已出版 - 2004
已对外发布
活动2004 IEEE International Conference on Multimedia and Expo (ICME) - Taipei, 中国台湾
期限: 27 6月 200430 6月 2004

出版系列

姓名2004 IEEE International Conference on Multimedia and Expo (ICME)
2

会议

会议2004 IEEE International Conference on Multimedia and Expo (ICME)
国家/地区中国台湾
Taipei
时期27/06/0430/06/04

指纹

探究 'Learning semantic concepts from user feedback log for image retrieval' 的科研主题。它们共同构成独一无二的指纹。

引用此