摘要
Au-Pt-Ti/high-k/n-InAlAs metal-oxide-semiconductor (MOS) capacitors with HfO2-Al2O3 laminated dielectric were fabricated. We found that a Schottky emission leakage mechanism dominates the low bias conditions and Fowler-Nordheim tunneling became the main leakage mechanism at high fields with reverse biased condition. The sample with HfO2 (4 m)/Al2O3 (8 nm) laminated dielectric shows a high barrier height ϕB of 1.66 eV at 30 °C which was extracted from the Schottky emission mechanism, and this can be explained by fewer In-O and As-O states on the interface, as detected by the X-ray photoelectron spectroscopy test. These effects result in HfO2 (4 m)/Al2O3 (8 nm)/n-InAlAs MOS-capacitors presenting a low leakage current density of below 1.8 × 10-7 A/cm2 from -3 to 0 V at 30 °C. It is demonstrated that the HfO2/Al2O3 laminated dielectric with a thicker Al2O3 film of 8 nm is an optimized design to be the high-k dielectric used in Au-Pt-Ti/HfO2-Al2O3/InAlAs MOS capacitor applications.
源语言 | 英语 |
---|---|
文章编号 | 720 |
期刊 | Coatings |
卷 | 9 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 2019 |