L1-norm-based 2DPCA

Xuelong Li, Yanwei Pang, Yuan Yuan

科研成果: 期刊稿件文章同行评审

286 引用 (Scopus)

摘要

In this paper, we first present a simple but effective L1-norm-based two-dimensional principal component analysis (2DPCA). Traditional L2-norm-based least squares criterion is sensitive to outliers, while the newly proposed L1-norm 2DPCA is robust. Experimental results demonstrate its advantages.

源语言英语
文章编号5382548
页(从-至)1170-1175
页数6
期刊IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
40
4
DOI
出版状态已出版 - 8月 2010
已对外发布

指纹

探究 'L1-norm-based 2DPCA' 的科研主题。它们共同构成独一无二的指纹。

引用此