Knee Joint Pathology Screening Using Time-Domain Multidimensional Fusion Feature and Random Forest

Chunyi Ma, Qian Wang, Tan Ding, Jianhua Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Knee-joint VAG signal analysis has a significant role in achieving early pathological screening of the knee joint and can be an efficient method for performing a non-invasive knee osteoarthritis (KOA) diagnosis. To improve the diagnostic accuracy of KOA, we presented a KOA pathology screening method based on time-domain multidimensional fusion feature (TDMFF) with the random forest, using feature fusion method to obtain a time-domain multidimensional fusion feature model to describe the fusion feature of VAG signals, combined with the random forest machine learning classifier for pathology screening. The research in this paper was verified by experiment results with collection testee's normal and abnormal VAG signals. The KOA screening results illustrate that our classification has accuracy of 0.93, sensitivity of 0.93, precision of 0.93, and Fi-score of 0.93. The research results have a high screening rate for knee joint pathological screening and offer a novel practical way for non-invasive KOA screening.

源语言英语
主期刊名Proceedings - 2022 Chinese Automation Congress, CAC 2022
出版商Institute of Electrical and Electronics Engineers Inc.
2194-2199
页数6
ISBN(电子版)9781665465335
DOI
出版状态已出版 - 2022
活动2022 Chinese Automation Congress, CAC 2022 - Xiamen, 中国
期限: 25 11月 202227 11月 2022

出版系列

姓名Proceedings - 2022 Chinese Automation Congress, CAC 2022
2022-January

会议

会议2022 Chinese Automation Congress, CAC 2022
国家/地区中国
Xiamen
时期25/11/2227/11/22

指纹

探究 'Knee Joint Pathology Screening Using Time-Domain Multidimensional Fusion Feature and Random Forest' 的科研主题。它们共同构成独一无二的指纹。

引用此