Investigating LSTM for punctuation prediction

Kaituo Xu, Lei Xie, Kaisheng Yao

科研成果: 书/报告/会议事项章节会议稿件同行评审

24 引用 (Scopus)

摘要

We present a neural network based punctuation prediction method using Long Short-Term Memory (LSTM) network. The proposed method uses bidirectional LSTM to encode both the past and future observation as its inputs. It models the dependency between input features and output labels through multiple layers. We also empirically study the impacts of modeling the dependency between output labels. Our results show that using a deep bi-directional LSTM is able to achieve state-of-the-art performance in punctuation prediction.

源语言英语
主期刊名Proceedings of 2016 10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016
编辑Hsin-Min Wang, Qingzhi Hou, Yuan Wei, Tan Lee, Jianguo Wei, Lei Xie, Hui Feng, Jianwu Dang, Jianwu Dang
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781509042937
DOI
出版状态已出版 - 2 5月 2017
活动10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016 - Tianjin, 中国
期限: 17 10月 201620 10月 2016

出版系列

姓名Proceedings of 2016 10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016

会议

会议10th International Symposium on Chinese Spoken Language Processing, ISCSLP 2016
国家/地区中国
Tianjin
时期17/10/1620/10/16

指纹

探究 'Investigating LSTM for punctuation prediction' 的科研主题。它们共同构成独一无二的指纹。

引用此