TY - JOUR
T1 - Intelligent Extremum Surrogate Modeling Framework for Dynamic Probabilistic Analysis of Complex Mechanism
AU - Liu, Jia Qi
AU - Feng, Yun Wen
AU - Xue, Xiao Feng
AU - Lu, Cheng
N1 - Publisher Copyright:
© 2021 Jia-Qi Liu et al.
PY - 2021
Y1 - 2021
N2 - The reliability analysis of complex mechanisms involves time-varying, high-nonlinearity, and multiparameters. The traditional way is to employ Monte Carlo (MC) simulation to achieve the reliability level, but this method consumes too much computing resources and is even computationally intractable. To improve the efficiency and accuracy of dynamic probabilistic analysis of complex mechanisms, an intelligent extremum surrogate modeling framework (IESMF, short for) is proposed based on extremum response surface method (ERSM), combined with artificial neural network (ANN) method and an improved optimize particle swarm optimization (PSO) method. Hereinto, the ERSM is used to simplify the dynamic process of output response to the extremum value of transient analysis; ANN is applied to establish a mathematical model between input variables and response, and the improved PSO method is utilized in search of initial weights and thresholds of the model. The effectiveness of the IESMF is demonstrated to perform the Rack-and-pinion steering mechanism (RPSM) reliability analysis. The results show that when the allowable value of gear root stress is equal to 850 MPa, the RPSM has a reliability degree of 0.9971. Through the validation process, it is illustrated that IESMF is accurate and efficient in dynamic probabilistic analysis of complex mechanisms, and its comprehensive performance is better than the MC method and ERSM. The research effort offers new ideas for the reliability estimation of a complex mechanism, thus enriching the method and theory of mechanical reliability design.
AB - The reliability analysis of complex mechanisms involves time-varying, high-nonlinearity, and multiparameters. The traditional way is to employ Monte Carlo (MC) simulation to achieve the reliability level, but this method consumes too much computing resources and is even computationally intractable. To improve the efficiency and accuracy of dynamic probabilistic analysis of complex mechanisms, an intelligent extremum surrogate modeling framework (IESMF, short for) is proposed based on extremum response surface method (ERSM), combined with artificial neural network (ANN) method and an improved optimize particle swarm optimization (PSO) method. Hereinto, the ERSM is used to simplify the dynamic process of output response to the extremum value of transient analysis; ANN is applied to establish a mathematical model between input variables and response, and the improved PSO method is utilized in search of initial weights and thresholds of the model. The effectiveness of the IESMF is demonstrated to perform the Rack-and-pinion steering mechanism (RPSM) reliability analysis. The results show that when the allowable value of gear root stress is equal to 850 MPa, the RPSM has a reliability degree of 0.9971. Through the validation process, it is illustrated that IESMF is accurate and efficient in dynamic probabilistic analysis of complex mechanisms, and its comprehensive performance is better than the MC method and ERSM. The research effort offers new ideas for the reliability estimation of a complex mechanism, thus enriching the method and theory of mechanical reliability design.
UR - http://www.scopus.com/inward/record.url?scp=85101977489&partnerID=8YFLogxK
U2 - 10.1155/2021/6681489
DO - 10.1155/2021/6681489
M3 - 文章
AN - SCOPUS:85101977489
SN - 1024-123X
VL - 2021
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 6681489
ER -