Integer colorings with no rainbow 3-term arithmetic progression

Xihe Li, Hajo Broersma, Ligong Wang

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

In this paper, we study the rainbow Erdős-Rothschild problem with respect to 3term arithmetic progressions. We obtain the asymptotic number of r-colorings of [n] without rainbow 3-term arithmetic progressions, and we show that the typical colorings with this property are 2-colorings. We also prove that [n] attains the maximum number of rainbow 3-term arithmetic progression-free r-colorings among all subsets of [n]. Moreover, the exact number of rainbow 3-term arithmetic progression-free r-colorings of Zp is obtained, where p is any prime and Zp is the cyclic group of order p.

源语言英语
文章编号P2.28
期刊Electronic Journal of Combinatorics
29
2
DOI
出版状态已出版 - 2022

指纹

探究 'Integer colorings with no rainbow 3-term arithmetic progression' 的科研主题。它们共同构成独一无二的指纹。

引用此