Information Gain-weighted Multi-sensor Arithmetic Average Fusion Kalman Filtering

Hongfei Li, Guchong Li, Tiancheng Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

This paper presents a novel multi-sensor Kalman filter (KF) based on the arithmetic average (AA) fusion method. In this approach, the fusing weights are designed according to the online Kalman gain matrix obtained from each local filter. Both the standard KF and the unscented KF (UKF) are applied to linear and nonlinear state space models, respectively. Simulation results demonstrate the superior target tracking performance of our approach compared to the recently proposed suboptimal AA fusion method using the Kullback-Leibler divergence (KLD) in both linear and nonlinear scenarios.

源语言英语
主期刊名Proceedings - 12th IEEE International Conference on Control, Automation and Information Sciences, ICCAIS 2023
编辑Truong Xuan Tung, Tran Cong Tan, Cao Huu Tinh
出版商Institute of Electrical and Electronics Engineers Inc.
230-235
页数6
ISBN(电子版)9798350328783
DOI
出版状态已出版 - 2023
活动12th IEEE International Conference on Control, Automation and Information Sciences, ICCAIS 2023 - Hanoi, 越南
期限: 27 11月 202329 11月 2023

出版系列

姓名Proceedings - 12th IEEE International Conference on Control, Automation and Information Sciences, ICCAIS 2023

会议

会议12th IEEE International Conference on Control, Automation and Information Sciences, ICCAIS 2023
国家/地区越南
Hanoi
时期27/11/2329/11/23

指纹

探究 'Information Gain-weighted Multi-sensor Arithmetic Average Fusion Kalman Filtering' 的科研主题。它们共同构成独一无二的指纹。

引用此