摘要
Laser additive manufacture (LAM) is a novel technique in which metal components can be fabricated layer by layer. In this paper, the effects of solution temperature and cooling rate on microstructure evolution of the LAMed TC21 titanium alloy which containing near equiaxed prior β grains were studied. The LAMed and solution treated samples were investigated by optical microscopy (OM), scanning election microscope (SEM) and X-ray diffractometer (XRD). The results indicate that both the α phase volume fraction and α laths width are affected by the solution temperature and cooling rate. Different microstructure characterization leads to different Vickers hardness values. However, the solution temperatures selected in this study have insignificant effects on the β and α phase texture. The near equiaxed prior β grains exhibits much weaker texture intensity than the typical columnar prior β grains. The comparison of the calculated and measured α phase texture indicates that variant selection occurred during the solution treatment. The martensite α′ phase precipitated during the layer by layer process shows weak variant selection tendency.
源语言 | 英语 |
---|---|
页(从-至) | 380-386 |
页数 | 7 |
期刊 | Journal of Alloys and Compounds |
卷 | 666 |
DOI | |
出版状态 | 已出版 - 2016 |