摘要
Solid-state Li batteries employing Li-metal anodes and solid Li/Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolytes have emerged as promising next-generation energy storage devices due to their high energy density and safety. However, their performance is seriously limited by the irreversible reactivity of LATP with the Li-metal anode and the poor solid–solid interfacial contact between them, which result in relatively low ionic conductivity at the interface. The present work addresses these issues by presenting a method for modifying the Li/LATP interface in situ by applying 2-(trimethylsilyl) phenyl trifluoromethanesulfonate (2-(TMS)PTM) as a new type of electrolyte additive between the Li anode and the LATP electrolyte when assembling the battery, and then forming a uniform and thin interfacial layer via redox reactions occurring during the application of multiple charge–discharge cycles to the resulting battery. As a result of the significantly improved chemical compatibility between the Li anode and the LATP electrolyte, an as-assembled battery delivers a high reversible capacity of 165.7 mAh g−1 and an outstanding capacity retention of 86.2% after 300 charge–discharge cycles conducted at a rate of 0.2C and a temperature of 30 °C. Accordingly, this work provides a new strategy for developing advanced solid-state Li metal batteries by tailoring the interface between the Li anode and the solid electrolyte.
源语言 | 英语 |
---|---|
页(从-至) | 396-403 |
页数 | 8 |
期刊 | Journal of Colloid and Interface Science |
卷 | 641 |
DOI | |
出版状态 | 已出版 - 7月 2023 |
已对外发布 | 是 |