Improved Parameter Uniform Priors in Bayesian Network Structure Learning

Manxi Wang, Liandong Wang, Zidong Wang, Xiaoguang Gao, Ruohai Di

科研成果: 期刊稿件会议文章同行评审

1 引用 (Scopus)

摘要

Bayesian Dirichlet equivalent uniform score (BDeu) is often used in Bayesian structure learning. But it does not work well when data size is sparse because the equivalence of the prior parameter distribution isn't suit for the specific data set. To break the rules of uniform and equivalent, the paper proposes the Bayesian Dirichlet Sparse score (BDs) which change distribution of prior parameter through the all zero items in the sparse data. The circulation principle of information entropy and simulations are used to explain the reason why BDs is better than BDeu when data size is sparse. In the experiments, we also verify the stability of BDs when hyperparameters change.

源语言英语
文章编号042099
期刊IOP Conference Series: Earth and Environmental Science
252
4
DOI
出版状态已出版 - 9 7月 2019
活动2018 4th International Conference on Environmental Science and Material Application, ESMA 2018 - Xi'an, 中国
期限: 15 12月 201816 12月 2018

指纹

探究 'Improved Parameter Uniform Priors in Bayesian Network Structure Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此