TY - JOUR
T1 - Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials
AU - Zhang, Weidong
AU - Zhang, Xue
AU - Wu, Hongjing
AU - Yan, Hongxia
AU - Qi, Shuhua
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/6/30
Y1 - 2018/6/30
N2 - Molybdenum disulfide (MoS2), as a significant microwave absorption materials, has been widely reported. However, it is unclear and insufficient about its microwave absorption mechanism. In this work, a series of MoS2-based materials with different morphology, including MoS2 nanosheets (MoS2-NS), hierarchical MoS2 (H-MoS2) microspheres, hollow hierarchical MoS2 (HH-MoS2) microspheres and hydrangea-like MoS2/C (MoS2/C) microspheres, were synthesized via hydrothermal reaction. More importantly, the microwave absorption mechanism and the dielectric properties as well as microwave absorption performance (MAP) were systemically studied. The results indicated that MoS2/C exhibited eminent dielectric properties and MAP, which resulted from the unique structure and component. The minimum reflection loss (RL) value of MoS2/C microspheres/wax with 30 wt% loading is −44.67 dB at the thickness of 1.4 mm, and the corresponding bandwidth with effective attenuation (RL < -10 dB) is up to 3.32 GHz (11.7–15.02 GHz).
AB - Molybdenum disulfide (MoS2), as a significant microwave absorption materials, has been widely reported. However, it is unclear and insufficient about its microwave absorption mechanism. In this work, a series of MoS2-based materials with different morphology, including MoS2 nanosheets (MoS2-NS), hierarchical MoS2 (H-MoS2) microspheres, hollow hierarchical MoS2 (HH-MoS2) microspheres and hydrangea-like MoS2/C (MoS2/C) microspheres, were synthesized via hydrothermal reaction. More importantly, the microwave absorption mechanism and the dielectric properties as well as microwave absorption performance (MAP) were systemically studied. The results indicated that MoS2/C exhibited eminent dielectric properties and MAP, which resulted from the unique structure and component. The minimum reflection loss (RL) value of MoS2/C microspheres/wax with 30 wt% loading is −44.67 dB at the thickness of 1.4 mm, and the corresponding bandwidth with effective attenuation (RL < -10 dB) is up to 3.32 GHz (11.7–15.02 GHz).
KW - Hierarchical structure
KW - Microwave absorbing performance
KW - MoS
KW - Semiconductors
UR - http://www.scopus.com/inward/record.url?scp=85045327808&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2018.04.111
DO - 10.1016/j.jallcom.2018.04.111
M3 - 文章
AN - SCOPUS:85045327808
SN - 0925-8388
VL - 751
SP - 34
EP - 42
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
ER -