Identifying group-wise consistent sub-networks via spatial sparse representation of natural stimulus FMRI data

Cheng Lyu, Xiang Li, Jinglei Lv, Xintao Hu, Junwei Han, Lei Quo, Tianming Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Natural stimulus fMRI has been increasingly used in the brain imaging and brain mapping fields thanks to its more realistic stimulation of the brain's perceptive and cognitive systems. However, identifying consistent functional networks across different brains in natural stimulus fMRI data has been challenging due to the intrinsic variability of individual brain's responses and a variety of sources of noises. Inspired by recent promising results of sparse representation of whole-brain fMRI data, in this paper, we present a novel hybrid temporal and spatial sparse representation of whole-brain natural stimulus fMRI data for the inference of common functional networks across fMRI sessions and individual brains. Experimental results on natural stimulus fMRI dataset demonstrated the effectiveness of this framework.

源语言英语
主期刊名2016 IEEE International Symposium on Biomedical Imaging
主期刊副标题From Nano to Macro, ISBI 2016 - Proceedings
出版商IEEE Computer Society
62-65
页数4
ISBN(电子版)9781479923502
DOI
出版状态已出版 - 15 6月 2016
活动2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 - Prague, 捷克共和国
期限: 13 4月 201616 4月 2016

出版系列

姓名Proceedings - International Symposium on Biomedical Imaging
2016-June
ISSN(印刷版)1945-7928
ISSN(电子版)1945-8452

会议

会议2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016
国家/地区捷克共和国
Prague
时期13/04/1616/04/16

指纹

探究 'Identifying group-wise consistent sub-networks via spatial sparse representation of natural stimulus FMRI data' 的科研主题。它们共同构成独一无二的指纹。

引用此