Hyperspectral Unmixing Via Plug-And-Play Priors

Xiuheng Wang, Min Zhao, Jie Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Hyperspectral unmixing aims at separating a mixed pixel into a set of pure spectral signatures and their corresponding fractional abundances. Investigating prior spatial and spectral information to regularize the unmixing problem can effectively improve the estimation performance. However, handcrafting a powerful regularizer is a non-trivial task and complex regularizers introduce extra difficulties in solving the optimization problem. In this paper, we present a flexible spectral unmixing method using plug-and-play priors. This method benefits from the alternating direction method of multipliers (ADMM) to decompose the optimization problem into iterative subproblems and incorporates the image denoisers as prior models in a subproblem. In this form, we can plug in various image denoising operations to bypass handcrafting regularizers. We demonstrate the superiority of the proposed unmixing method comparing with other state-of-the-art methods both on synthetic data and real airborne data.

源语言英语
主期刊名2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings
出版商IEEE Computer Society
1063-1067
页数5
ISBN(电子版)9781728163956
DOI
出版状态已出版 - 10月 2020
活动2020 IEEE International Conference on Image Processing, ICIP 2020 - Virtual, Abu Dhabi, 阿拉伯联合酋长国
期限: 25 9月 202028 9月 2020

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
2020-October
ISSN(印刷版)1522-4880

会议

会议2020 IEEE International Conference on Image Processing, ICIP 2020
国家/地区阿拉伯联合酋长国
Virtual, Abu Dhabi
时期25/09/2028/09/20

指纹

探究 'Hyperspectral Unmixing Via Plug-And-Play Priors' 的科研主题。它们共同构成独一无二的指纹。

引用此