Hyperspectral imagery denoising using multi-linear weighted nuclear norm minimization

Xiangyang Kong, Yongqiang Zhao, Jonathan Cheung Wai Chan

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Classical matrix-based denoising methods for hyperspectral imagery (HSI) may cause spatial and spectral distortion. To improve denoising performance, a multi-linear weighted nuclear norm minimization was proposed for HSI denoising. By considering spectral continuity and inter-dependency of three unfolding modes, a multi-linear rank was proposed to model the spatial and spectral nonlocal similarity. To make the proposed method more tractable, a variable splitting based technique was used to solve the optimization problem. Experiment results reveal that the proposed method outperforms state-of-the-art methods both visually and quantitatively.

源语言英语
主期刊名2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2717-2720
页数4
ISBN(电子版)9781538671504
DOI
出版状态已出版 - 31 10月 2018
活动38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, 西班牙
期限: 22 7月 201827 7月 2018

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2018-July

会议

会议38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
国家/地区西班牙
Valencia
时期22/07/1827/07/18

指纹

探究 'Hyperspectral imagery denoising using multi-linear weighted nuclear norm minimization' 的科研主题。它们共同构成独一无二的指纹。

引用此