TY - JOUR
T1 - Hyperspectral Anomaly Detection via S1/2and Total Variation Low Rank Matrix Decomposition
AU - Wang, Jingyu
AU - Huang, Pengfei
AU - Zhang, Ke
AU - Wang, Qi
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2022
Y1 - 2022
N2 - Anomaly detection (AD) on hyperspectral images has been widely researched in recent decades due to its high practicability and wide range of application scenarios. Such AD methods derived from low-rank matrix decomposition (LRMD) have appeared rapidly and been applied effectively. However, most of them focused on the use of spectral information and neglected the abundant spatial characteristics. In this letter, a spectral-spatial total variation (TV) (SSTV) regularized low-rank matrix decomposition method with a Schatten 1/2 quasi-norm ( $S-{1/2}$ ) and denoising is proposed. First, to exploit the hyperspectral imagery (HSI) characteristics from the spectral perspective, we propose the low-rank matrix decomposition method with $S-{1/2}$ norm and image denoising modules. Second, we incorporate the SSTV regularization by employing a 2-D TV (TV) spatially and 1-D TV along the spectral dimension to realize the maximized utilization of spatial characteristics of HSI. Finally, the alternating direction multiplier method (ADMM) is brought in the calculating process to attain the consequent detection results. The superiority of the proposed method has been demonstrated by the excellent performance on three real datasets.
AB - Anomaly detection (AD) on hyperspectral images has been widely researched in recent decades due to its high practicability and wide range of application scenarios. Such AD methods derived from low-rank matrix decomposition (LRMD) have appeared rapidly and been applied effectively. However, most of them focused on the use of spectral information and neglected the abundant spatial characteristics. In this letter, a spectral-spatial total variation (TV) (SSTV) regularized low-rank matrix decomposition method with a Schatten 1/2 quasi-norm ( $S-{1/2}$ ) and denoising is proposed. First, to exploit the hyperspectral imagery (HSI) characteristics from the spectral perspective, we propose the low-rank matrix decomposition method with $S-{1/2}$ norm and image denoising modules. Second, we incorporate the SSTV regularization by employing a 2-D TV (TV) spatially and 1-D TV along the spectral dimension to realize the maximized utilization of spatial characteristics of HSI. Finally, the alternating direction multiplier method (ADMM) is brought in the calculating process to attain the consequent detection results. The superiority of the proposed method has been demonstrated by the excellent performance on three real datasets.
KW - Hyperspectral anomaly detection (AD)
KW - image denoising
KW - low-rank matrix decomposition
KW - spectral-spatial total variation (TV) (SSTV)
UR - http://www.scopus.com/inward/record.url?scp=85112614388&partnerID=8YFLogxK
U2 - 10.1109/LGRS.2021.3096720
DO - 10.1109/LGRS.2021.3096720
M3 - 文章
AN - SCOPUS:85112614388
SN - 1545-598X
VL - 19
JO - IEEE Geoscience and Remote Sensing Letters
JF - IEEE Geoscience and Remote Sensing Letters
ER -