Hyperspectral anomaly detection using background learning and structured sparse representation

Fei Li, Yanning Zhang, Lei Zhang, Xiuwei Zhang, Dongmei Jiang

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

A novel background dictionary learning and structured sparse representation based anomaly detection method is proposed for hyperspectral imagery. First, a robust PCA spectrum dictionary is learned from the plausible background area detected by the local RX detector. With the learned dictionary, the reweighted Laplace prior based structured sparse representation model is then employed to reconstruct the spectrum of each pixel in the image. Due to considering the structured sparsity in representation, the background spectra can be reconstructed more accurately than anomaly ones. Thus, reconstruction error is utilized to separate the anomaly pixels and background ones. Experimental results on both simulated and real-world datasets demonstrate that the proposed method outperforms several state-of-the-art hyperspectral anomaly detection methods.

源语言英语
主期刊名2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
1618-1621
页数4
ISBN(电子版)9781509033324
DOI
出版状态已出版 - 1 11月 2016
活动36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, 中国
期限: 10 7月 201615 7月 2016

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2016-November

会议

会议36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
国家/地区中国
Beijing
时期10/07/1615/07/16

指纹

探究 'Hyperspectral anomaly detection using background learning and structured sparse representation' 的科研主题。它们共同构成独一无二的指纹。

引用此